HIV-1 Group M Conserved Elements Vaccine

نویسندگان

  • Morgane Rolland
  • David C Nickle
  • James I Mullins
چکیده

Recent HIV vaccine designs have sought to block viral escape pathways by compressing antigenic diversity. In light of HIV’s propensity to mutate and thereby to ever ramify viral populations, could it be that providing sufficient protection against global diversity is an insurmountable problem? We propose an alternative HIV-1 vaccine design that deliberately includes viral segments conserved across the entire main group (or M group) of HIV1 strains and excludes variable segments. We describe a prototype conserved elements (CE) vaccine constituted of 45 viral segments at least eight amino acids long that fulfill stringent conservation criteria. Our paradigm contends that the best way to cope with HIV-1 diversity may be to avoid it altogether. We argue that a successful vaccine must elicit responses against conserved regions of the viral proteome in which mutations would severely compromise the viability of the virus. Simultaneously, it must not elicit responses against variable, ‘‘decoy’’ elements of the virus, i.e., features that can mutate while retaining function, and that can absorb much of the adaptive host immune response. Coping with HIV-19s extensive diversity is a major challenge for vaccine design strategies. Centralized (consensus and ancestral) immunogens [1–3] have in some cases improved the breadth of responses, and recent designs seek to compress the more common variant features among circulating strains into immunogens [4–6]. However, there is a practical limit to antigenic complexity that may prevent inclusion of all escape pathways in realistically sized immunogens. Besides, HIV’s propensity to mutate has been shown to provide means for HIV to escape from antiretrovirals and antibody and cytotoxic T lymphocyte (CTL) pressures. The foregoing considerations led us to propose a vaccine exclusively composed of viral segments strictly conserved in all HIV-1 M group proteins and specifically devoid of mutable segments. The presence of segments that are nearly invariant in all HIV-1 M group proteomes strongly suggests that those CE are both obligatory for viral viability and are the Achilles’ heels of the virus. Additionally, considering that variable segments can readily escape CTL pressures and can be highly immunogenic epitopes, we propose that mutable segments may act as immunologic decoys, subverting responses away from conserved elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIV-1 p24gag Derived Conserved Element DNA Vaccine Increases the Breadth of Immune Response in Mice

Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag) region according to two principles: the immunogen must (i) include strictly conserved elements of the vir...

متن کامل

HIV-1 Conserved Elements p24CE DNA Vaccine Induces Humoral Immune Responses with Broad Epitope Recognition in Macaques

To target immune responses towards invariable regions of the virus, we engineered DNA-based immunogens encoding conserved elements (CE) of HIV-1 p24gag. This conserved element vaccine is designed to avoid decoy epitopes by focusing responses to critical viral elements. We previously reported that vaccination of macaques with p24CE DNA induced robust cellular immune responses to CE that were not...

متن کامل

Broad and Cross-Clade CD4+ T-Cell Responses Elicited by a DNA Vaccine Encoding Highly Conserved and Promiscuous HIV-1 M-Group Consensus Peptides

T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of ...

متن کامل

Superior Control of HIV-1 Replication by CD8+ T Cells Targeting Conserved Epitopes: Implications for HIV Vaccine Design

A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced respons...

متن کامل

HIV-1 conserved-element vaccines: relationship between sequence conservation and replicative capacity.

To overcome the problem of HIV-1 variability, candidate vaccine antigens have been designed to be composed of conserved elements of the HIV-1 proteome. Such candidate vaccines could be improved with a better understanding of both HIV-1 evolutionary constraints and the fitness cost of specific mutations. We evaluated the in vitro fitness cost of 23 mutations engineered in the HIV-1 subtype B Gag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Pathogens

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007